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Transverse ordering in off-critical quenches of a system with 
continuous symmetry 

M Zannetti 
Dipadmento di Fisica, Universits di Salemo. 84081 Bamnissi (SA), Italy 

Abstract The dynamics of a system quenched below the critical point with explicitly broken 
symmetry (off-critical quench) is cansidered in the framework of an O ( N )  vector model in the 
large-N limit with non-conserved order parameter. Considering the behaviour of fluctuations in 
 the^ transverse directions. we find ordering and scaling of the transverse smlure  factor in the 
intermediate time regime between the usual early and late stages. 

1. Introduction 

 in the time evolution of a system quenched below the critical point one usually makes the 
distinction between early and late stages. Immediately after the quench there is exponential 
growth of fluctuations, well described by linear theories [I]. Later on, when non-lineatities 
become effective, growth slows down, domains are formed with locally broken symmetry 
and the process of phase ordering takes placet. In the late stage of this process local 
equilibrium is reached and, within domains, the order parameter saturates to one of the 
allowed ground-state values. Late-stage theories [Z] built on the observation that in 
this time regime the only dynamics left in the system is the motion of domain walls., The 
equivalent statement is that all time dependence takes place through the average domain 
size L ( t )  produced as a consequence of dynamic scaling [3], a phenomenon which is the 
object of intensive investigation but, as yet, not fully understood. 

By contrast, very little is known about the time regime in between the early and late 
stages. According to the picture outlined above, this intermediate stage should occur when 
domains have already formed, but the order parameter has not yet reached saturation and 
fluctuations do play a significant role. Although the identification and study of such a 
regime, in general, is a difficult problem [4], investigation of off-critical quenches has 
revealed that non-trivial phenomena with universal features also take place before the 
asymptotic regime is reached. In particular Janssen eta1 [5] have discovered a new exponent 
characterizing the behaviour of the magnetization in the intermediate stage of a quench 
from high temperature to the critical point. Anomalous transverse fluctuations with scaling 
behaviour in the intermediate stage have also been found in the somewhat different context 
of the magnetization instability following an isothermal magnetic field inversion [6,7]. 

Here we consider off-critical quenches below the critical point in a system with a 
vectorial. non-conserved order parameter h’the la rge4  limit [8].~J.n processes of this type 

 symmetry is explicitly broken from the beginning either by preparing the system in ad 
unsymmetrical initial state or by turning on a small external. field immediately after the 
quench. In either case a non-zero expectation value of the order parameter (magnetization 

t For simplicity the physical picture is presented here with the t e d o l o g y  of domain formation, which is 
appropriate only for scalar order parameters. 
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for short) develops over the entire volume of the system and in the same direction. In 
so doing the whole system acts like one single domain in the phase-ordering problem. 
Clearly the notion of domain wall (more generally topological defect) disappears here and 
the late stage is trivial but, as we shall see below, there is a non-trivial intermediate stage 
characterized by the growth and scaling of fluctuations in the transverse direction. 

2. Formalism 

The time evolution of the system is described by the equation of motion of the Langevin 
type 

where + = ($1, . . . ,$,v) is an N-component order parameter, r and g are positive quantities, 
h is an extemal field and P(z, t) is the Gaussian white noise with expectations 

(q(z, t ) )  = 0 (q.(z, t)qp(z‘, 1‘)) = 2T&& - z’)S(t - t’) (2.2) 

where T is the final equilibrium temperature. In the following, symmetry will be broken 
along the 1-axis either by preparing an initial state with non-vanishing magnetization in that 
direction or by applying a non-vanishing field of the form h, = h&l. 

In both cases, with the magnetization m(t) defined by 

(&&, t ) )  = N’”m(t)&, (2.3) 

the transverse and longitudinal equal-time correlation functions are given by 

(2.4) 

where averages are taken over the initial state and thermal noise. By Fourier transforming 
and taking the N + ca limit these quantities obey the set of equations [6] 

am(t)/at = -4 [-r + g(m’(t) + S(t))]  m(t) + i h  (2.5) 

aCll(k, t ) / a t  = - [k2 - r +g(3m2(t) + S(t))]  Cll(k, t )  + T (2.6) 

ac& tuat  = - [k’ - r + g(m2(t) + ~ ( t ) ) ]  c d k ,  t )  + T (2.7) 

which is closed by the selfconsistency condition 

Since the longitudinal structure factor Cl,(k,t) is completely determined by m(t) and 
CL(k, t ) .  from now on we shall concentrate on the pair of coupled equations (2.5) and 
(2.7) with initial conditions m(0) = mo and C l ( k ,  0) = A. 
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Let us briefly summarize the zero-field equilibrium properties [6] which will be needed 
in the following. Imposing a momentum cutoff at k = 1, there is a critical temperature 
given by T, = ~ 2 d - 1 n d / 2 r ( d / 2 ) ( d  - 2)r/g, where d is the space dimensionality. Below Tc 
the spontaneous magnetization is given by . .  

while the transverse structure factor 

C(k,cn) = T/k2 (2.10) 

exhibits the gapless k-dependence due to the presence of the Nambu-Goldstone modes. 

integrated yielding 
Going back to the dynamical problem, equations (2.5) and (2.7) can be formally 

where 

(2.13) 

In a paper devoted to the determination of the h exponent [9 ]  from~ the behaviour of 
the magnetization, Bray and Kissner [ l o ]  have analysed, in detail, an equation of the type 
(2.11). Our p r i m e  concern here is with the behaviour of the transverse smcture factor 
CL(k, t ) .  The central quantity is Q(t) .  Defining the length L(t) = t'/*, from equation 
(2.12) follows the scaling behaviour .~ 

C(k, t) - L " ( t ) f ( x )  + TL2(t)g(x) (2.14) 

with x = kL(t) and 

2 
f ( x )  =e-* g(x) = bd-2e-X2 1 &'x'(l-d)exo (2.15) 

over time intervals where the power law 

e-QW - L"(t) (2.16) 
is obeyed; with some exponent a to be determined In order to establish whether this will 
occur at all we must analyse the equation for Q(t) obtained via the definition (2.13) and 
the self-consistency condition (2.8) , ,  

- .Qlrl = -reQlfl + [ mo + - lt &'eQlf'V2 ]2 + AA(t)  + T dt' A(t - t')eQ"') ~ (2.17) 
dt 

where 

(2.18) 
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3. Off-critical quenches 

Let us first consider a quench without external field (h = 0) at zero final temperature 
(T = 0). In that case the amplitude of the transverse structure factor is given by 

Then, for short time (t << r ) ,  equation (2.17) yields the early-stage exponential growth 
anticipated in the introduction 

c ~ ( k  = 0, t )  rr e" (3.2) 

while, for longer times, one has 

(3.3) 

where c is a positive constant. This result shows that there exists a characteristic time 
related to the initial condition 

2/d t* = (Ac/mi) (3.4) 

such that if t* >> I/r it is possible to find an intermediate temporal regime ( I / r  << t << t') 
where the power law (2.16) is obeyed with a = d. Beyond that, in the late stage, the 
amplitude relaxes to the finite value Cl(k = 0,ca) = Am2(w)/m;. The interesting 
finding then is the existence of a time interval (intermediate stage) where the scaling form 
(2.14) holds. This is the counterpart, for the transverse structure factor, of the scaling regime 
found by Bray and Kissner for the magnetization before saturation. 

The duration of this regime can be modulated by varying initial conditions. In particular, 
it should be noted that t* diverges as mo goes to zero. Thus, from the point of view 
adopted here, symmetrical critical quenches may he regarded as the limiting cases where 
the magnetization stays identically zero, there is no distinction of longitudinal and transverse 
modes and the duration of the scaling regime is unbounded. Since in that case scaling is 
associated with ordering, we may conclude that the existence of an intermediate scaling 
regime in off-critical quenches, as described above, is a manifestation of ordering in the 
transverse directions. Namely, as long as the magnetization is below saturation, transverse 
fluctuations grow much in the same way as if symmetry had not been broken. It is only 
near saturation that fluctuations regress and eventually disappear. 

In order to follow the time sequence of the three stages above mentioned, equations 
(2.5) and (2.7) have been solved numerically ford  = 3 with r = 10, g = 1 (corresponding 
to 'G = 197.4) and initial conditions mo = 0.001, A = 1 (which give t* - Id). In 
figure 1 the behaviour of C,(k = 0. t )  .is plotted showing agreement with the exponential 
growth law (3.2) at sholt time. In figure 2 the behaviour of the amplitude Cl(k = 0, t )  is 
displayed over a much longer time interval in a double logarithmic plot. For comparison 
(broken curve) the behaviour of the amplitude in the symmetrical case (ma = 0) is also 
reported. Fort < t* the plot clearly shows the existence of an intermediate stage, precisely 
for 1 < t < 10'. where the amplitude scales like L3(r) exactly as in the symmetrical case, 
revealing growth of order in the transverse directions. For t - t* deviation from scaling 
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Figure 2. Ordering in the transverse directions in the intermediate stage of a quench with 
mo = 0.001, A = 1, T = 0, h = 0. The slope of the broken,line is 1.5. 

occurs and-eventually the late stage is entered where relaxation to the final equilibrium 
value takes place. 

This picture changes in a quench to a finite final temperature. In that case the transverse 
structure factor must eventually relax to the equilibrium form (2.10). with a scaling behaviour 
described by the second term in the right-hand si& of (2.14). Therefore we expect the same 
behaviour as in a zero temperature quench is far as the early and intermediate stages are 
concemed. namely ordering in the transverse directions, followed by a late stage where the 
amplitude Cl(k = 0, t )  rather than cmssing over to a constant value, scales like LZ( t )  
signalling the onset of the NambuColdstone modes. This is illustrated in  figure^ 3 for a 
quench at T = 3TJ4. 

Let us now consider the numerical solution of equations (2.5) and (2.7) in the presence 
o f  a small ~ extemal field along the 1-axis. Specifically we consider a quench with 
r = IO, g = 1, T = TJ2, h = 0.001 and symmetrical initial conditions mo = 0. A = 0.01. 
The behaviour of the transverse amplitude is displayed in figure 4. Omitting the early 
stage, which does not show in the scale of the figure, again the plot shows clearly the 
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Figure 3. Crossover from ordering in the transverse directions to the growth of the Nambu- 
Goldstone modes in a quench with mo = 0.001, A = 0. T = :Tc, h = 0. The slopes of broken 
curves are 1.45 in the intermediate stage and 0.9 in the late stage. 

existence of an intermediate stage where the transverse amplitude scales like L3(t)  as in 
the symmetrical case (broken curve). Eventually the late stage is entered where relaxation 
to the final equilibrium value Cl(k = 0,m) = T m ( w ) / h  takes place. In this case there 
are no Nambu-Goldstone modes, since the transverse correlation length remains finite. 
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Figure 4. Ordering in the !"verse dmctions in the intermediate stage of a quench with 
mo = 0, A = 0.01, T = 212,  h = 0.001. The slope of the broken line is 1.45. 

In order to show that the behaviour of the transverse structure factor in the intermediate 
stage is controlled by the first term in the right-hand side of (2.14), in figure 5 we have 
rescaled data taken at five different times obtaining an excellent data collapse on a scaling 
function of the form 

Finally, it is clear that the intermediate stage becomes longer as the external field 
becomes smaller. Estimating the order of magnitude of the dumtion of the intermediate 
stage by the time it takes for the amplitude to reach its maximum value (figure 4). namely 
by t,,, defined by Cl(k = 0, a,) = max, we find (figure 6)  the power law f& = O.Zh"'. 
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Figure 5. Dafa collapse for the hamverse struchne factor in the in@Iediate stage of a quench 
with mo = 0, b = 0.01. 7 = TJ2, h = 0.001. The. full curve is the plot of f (x) &lined by 
equation (3.5). 
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Figure 6. Plot of l& against h. The full curve is best fit with f;h = 0.2k0”. 

4. Concluding remarks 

In conclusion, by considering off-critical quenches obtained either by preparing the system 
with a small initial magnetization or by applying a small extemal field we have shown, 
within the framework of the large-N model, the existence of three distinct time regimes. 
Symmetry being broken from the outset we have analysed the behaviour of transverse 
fluctuations, finding that in the early and intermediate stages these essentially evolve in the 
same way as in a symmetrical quench. This indicates that the growth of magnetization is 
a slow process, while growth of transverse fluctuations is much faster. Then, as long as 
magnetization is small the system also attempts to develop a Bragg peak in the transverse 
directions by condensation of fluctuations at k = 0. This process eventually stops and 
regresses when m(t) becomes of the order of the saturation value. According to this picture, 
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the growth of order in the symmetrical quench is a particular case where condensation of the 
Nambu-Goldstone modes at k = 0 continues over an unbounded time interval. Different 
behaviour is then to be expected when the order parameter is conserved, since in that case 
condensation at IC = 0 is prevented by the conservation law. 

Finally, ordering along directions perpendicular to that of symmetry breaking is a 
phenomenon of more general occurrence than that described here, having also being found 
in a rather different physical situation, such as the response of a system subjected to a 
time-varying magnetic field [ll]. 
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